IMPERIAL COMMUNITY COLLEGE DISTRICT IMPERIAL VALLEY COLLEGE

COURSE OUTLINE

DIVISION : Industrial Technology		ORIGINATION DATE: May 1990		
		MODIFICATION DATE: Nov 2008		
COU	URSE TITLE: Electronics Circuits ans Semice	onductors COURSE No : ELTR140 UNITS : 4		
	LEC HRS: 2 LAB HRS: 3	TBA :		
	If cross-referenced, please complete			
	COURSE NO. (S)	COURSE TITLE		
ı.	CATALOG DESCRIPTION:			
	A continuation of Electronics 120. Topics and solid state components.	s will include: Semiconductor devices. Amplifiers		
II.	PREREQUISITES, IF ANY:			
III.	COREQUISITES, IF ANY:			
IV.	GRADING CRITERIA:			
	X Course must be taken on a "letter-g	grade" basis only.		
Course may be taken on a "credit" basic or for a letter grade.				
	Course must be taken on a "credit"	basis only.		
	RECOMMENDED PREPARATION:			
	Math 90			

- V. MEASURABLE COURSE OBJETIVES AND MINIMUM STANDARDS FOR GRADE OF "C":
- 1. THE STUDENT WILL BE ABLE TO MEASURE THE INDUCTOR ABILITY TO STORE ELECTROMAGNETIC ENERGY
- 2. THE STUDENT WILL BE ABLE TO SOLVE PROBLEMS RELATED TO AC SERIES, AC PARALLEL, AND AC SERIES-PARALLEL RL CIRCUITS
- 3. THE STUDENT WILL BE ABLE TO MEASURE THE TRANSFORMER ABILITY TO INCREASE/DECREASE VOLTAGE & CURRENT AMPLITUDES.
- **4.** THE STUDENT WILL BE ABLE TO VERIFY THE PN JUNCTION SEMICONDUCTOR BEHAVIOR.
- 5. THE STUDENT WILL BE ABLE TO DESIGN AND SOLVE CIRCUITS RELATED TO DIODES.
- **6.** THE STUDENT WILL BE ABLE TO SOLVE AND DESIGN CIRCUITS RELATED TO BJT AND FET TRANSISTORS.
- **7.** THE STUDENT WILL BE ABLE TO SOLVE AND APPLY POWER CIRCUITS RELATED TO THYRISTORS.
- 8. THE STUDENT WILL BUILD AND TEST A POWER SUPPLY.

VI. CORE CONTENT TO BE COVERED IN ALL SECTIONS:

1. INDUCTORS Approx. % of

Course or hours 10%

2. RL CIRCUITS Approx. % of

Course or hours 10%

3. RLC CIRCUITS Approx. % of

Course or hours 20%

4. TRANSFORMERS Approx. % of

Course or hours 15%

5. INTRODUCTION TO SEMICONDUCTORS Approx. % of

Course or hours 15%

6. DIODES AND APPLICATIONS Approx. % of

Course or hours 10%

7. TRANSISTORS AND THYRISTORS Approx. % of

Course or hours 20%

VII. METHOD OF EVALUATION TO DETERMINE IF OBJECTIVES HAVE BEEN MET BY STUDENTS: (Check all that apply)

Essay	<u>X</u>	Class Activity	<u>X</u>	Written Assignments	X			
Problem Solving Exercise	_X_	Final Exam	_X_	Oral Assignments	<u> X</u>			
Skill Demonstration	_X_	Objective	_X_	Quizzes	X			
Other								
INSTRUCTIONAL METHODOLOGY: (Check all that apply)								
Lecture	X	Discussion	X	Demonstration	<u>X</u>			
Audio Visual	_X_	Group Activity	_X_	Lab Activity	<u> X</u>			
Computer Assisted Instruction	X	Individual Assistance	_X_	Simulation/ Case Study	X			
Two (2) hours of independent work done out of class per each hour of lecture or class work, or 3 hours lab, practicum, or the equivalent per unit.								
Other								

VIII. REQUIRED AND MAJOR OPTIONAL READING (S), INCLUDING TEXTBOOK (S) AND SOFTWARE:

Texts: Floyd, <u>Electronics Fundamentals: Circuits, Devices, and Applications</u>, 8th Ed. 2008.

Floyd, Experiments in Electronics Fundamentals and Electric Circuits Fundamentals, 8th Ed. 2009.

Journals: Electronic Design, EDN, ECN, Circuit Cellar Ink.

Software: Multisim 2009, Electric & Electronics Simulation Program